· computer – a programmable electronic device that can store, retrieve, and process data
· Much of human behavior and thought is characterized by logical sequences.
· Programming is planning or scheduling the performance of a task or an event.
· Computer Programming is the process of planning a sequence of steps for a computer to follow
· 3 phases in a program’s life cycle
1) Problem-solving phase
a) Analysis and specifications – define a problem and what the solution must do
b) General solution (algorithm) develops a logical sequence of steps that solves the problem
c) Verify – follow the steps exactly to see if the solution solves the problem
2) Implementation phase
a) Concrete solution (program) – translate the algorithm into a programming language
b) Test – have computer follow instructions, then manually check the results, and make corrections
3) Maintenance phase
a) Use program
b) Maintain – modify as needed
· Algorithm is a step-by-step procedure for solving a problem in a finite amount of time
· We use algorithms every day. Such as recipes, instructions, and directions are all examples of algorithms that are not programs
· An algorithm must terminate in a finite amount of time for all possible conditions
· Programming language is a set of rules, symbols and specific words used to construct a computer program
· Programming forces you to write very simple, exact instructions
· Coding the algorithm is translating an algorithm into a programming language
· Debug is determining what is wrong and modify program
· Think first and code later (saves time later)
· Documentation is the written text and comments that make a program easier for others to understand, use, and modify
· Information is any knowledge that can be communicated
· Data is information in a form a computer can use
· Binary Code – 0 and 1
· Assembler – a program that translates an assembly language program into machine code
· Compiler – a program that translates a high-level language into machine code
· Source program – a program written in a high-level programming language
· Object program – the machine language version of a source program
· Benefit of standardized high-level languages is that they allow you to write portable code that can be used on different machines
· Compilation – computer runs the compiler program
· Execution – program loaded into memory unit, replacing compiler program
· 4 basic ways of structuring statements (instructions) in most programming languages
1) Sequence is a series of statements that are executed one after another
2) Conditional execute different statements depending on certain conditions
3) Repetitive (loop) repeats statements while certain conditions are met
4) Subprogram – structure a program by breaking it into smaller units
· 6 basic computer components
1) memory unit – internal data storage
2) arithmetic / logic unit – perform operations and compare values
3) control unit – controls actions so instructions executed in correct order
4) input devices – accept data to be processed (keyboard, mouse)
5) output devices – present results of processing (printer, screen)
6) peripheral devices / auxiliary storage devices (secondary storage, scanner, CD, DVD, digital camera, modems, audio sound cards and speakers)
· Hardware – physical components
· Software – programs
· Operating system – a set of programs that manages all of the computer’s resources
· Ethics and Responsibilities in the Computing Profession
· Software piracy – The unauthorized copying of software for either personal use or use by others.
· Virus – A computer program that replicates itself, often with the goal of spreading to other computers without authorization, and possibly with intent of doing harm.
· Software engineering – The application of traditional engineering methodologies and techniques to the development of software.
· Problem-Solving Techniques
1) ask questions
· What do I have to work with – that is, what is my data?
· What do the data items look like?
· How much do the data items look like?
· How much data is there?
· How will I know when I have processed all the data?
· What should my output look like?
· How many times is the process going to be repeated?
· What special error conditions might come up?
2) look for things that are familiar
· If you’ve solved the same or similar problem before, just repeat your solution.
3) solve by analogy
· broader application of the strategy of looking for things that are familiar
4) means ends analysis
· You begin by writing down what the input is and what the output should be. Then you consider the actions a computer can perform and choose a sequence of actions that can transform the data into the results.
5) divide and conquer
· break up a large problem into smaller pieces that we can solve individually
6) building block approach
· combining smaller problems in which solutions may already exist to solve a large problem
7) merging solutions
· Whenever the solutions to subproblems duplicate steps, think about merging them instead of joining them end-to-end.
8) mental blocks: fear of starting
· rewrite the problem in your own words is a good way to focus on the subparts of the problem
9) algorithmic problem-solving
· step-by-step procedure to make the computer transform, manipulate, calculate, or process the input data to produce the desired output

Questions:
1) What is a computer program?
2) What are the three phases in a program’s life cycle?
3) Is an algorithm the same as a program?
4) What is a programming language?
5) What are the advantages of using a high-level programming language?
6) What does a compiler do?
7) What part does the object program play in the compilation and execution processes?
8) Name the four basic ways of structuring statements in C++ and other languages.
9) What are the six basic components of a computer?
10) What is the difference between hardware and software?
11) In what regard is theft of computer time like stealing a car? How are the two crimes different?
12) What is the divide-and-conquer approach?

// *************************
/* Paycheck program
This program computes an employee's wages for the week */
// *************************
#include <iostream> // standard input-output stream

using namespace std; // provides a scope to the identifiers

void CalcPay(float, float, float&);

const float max_hours = 40.0; // normal hours worked
const float overtime = 1.5; // overtime pay rate factor

int main()
{
 float payRate, hours, wages; /* Employee's pay rate, hours worked, and wages earned */
 int empNum; // Employee ID number

 cout << "Enter employee number: "; // Prompt
 cin >> empNum; // Read employee ID Number
 cout << "Enter pay rate: "; // Prompt
 cin >> payRate; // Read hourly pay rate
 cout << "Enter hours worked: "; // Prompt
 cin >> hours; // Read hours worked

 CalcPay(payRate, hours, wages); // Compute wages

 cout << "----- Output Result -----" << endl << "Employee No.: " << empNum << endl
 << "Pay rate: $" << payRate << endl
 << "Hours: " << hours << endl
 << "Wages: $" << wages << endl; // Output result to screen
 return 0; // Indicate successful completion
}

// *************************
void CalcPay(float payRate, float hours, float& wages)
/* CalcPay computes wages from the employee's pay rate and the hours worked, taking overtime into account */
{
 if (hours > max_hours) // overtime?
 wages = (max_hours * payRate) + (hours - max_hours) * payRate * overtime; // Yes
 else
 wages = hours * payRate; // No
}

C++
1. What are similarities and differences do you see with Python and C++?
2. How are comments shown?
3. How is a block of a program shown?
4. How are variables written?
5. How are input/output written?
6. How do you show successful completion of a program?
